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BACKGROUND CONCLUSION
• Morphological annotation and clustering analysis revealed a high level of inter-

and intra-patient heterogeneity, both in terms of morphology and gene expression
• This heterogeneity allowed us to identify four groups of patients (classes)
• These four groups showed different biological features and different disease

outcome in our dataset
• Those differences (both biological and in terms of survival) were observed also in

METABRIC
• Since 2 of these 4 groups were related to increased metabolism, metabolism 

seems to be a key feature in ILC biology

• Invasive lobular breast carcinoma (ILC) represents 15% of all invasive breast cancers (BC)
• Understudied subtype
• Characterized by late relapse
• Loss of cell adhesion and typical “single file” pattern of the cells (Fig. 1)
• The tumor microenvironment (TME) is the set of normal cells, molecules and blood vessels

that surround and feed a tumor cell (Fig 2.)
• A tumor can change its TME, and the TME can affect how a tumor growths and spreads
• Interaction between cancer cells and TME plays a role in defining prognosis in BC Figure 1.

In this work, we aimed to study tumor microenvironment heterogeneity in
ILC. We performed spatial transcriptomics (ST) on 43 frozen tumor samples
obtained from patients with estrogen receptor-positive, HER2-negative ILC.
ST is a technique that allows us to sequence the RNA of a slice of tissue by
keeping the spatial information of the RNA expression, thanks to special
spots that are able to capture the RNA of the tissue. Hematoxylin/eosin
sections relative to each sample were morphologically annotated by
assigning a cell type (label) to each cell and structure present in the slide.
We performed clustering analysis in each sample (at the spot level),
identifying groups of spots (across all our patients) sharing common
characteristics from their gene expression point of view. The information
coming from the spot level clustering analysis and the morphological
annotation was merged and used as input for a clustering analysis at the
patient level. We identified four groups of patients inside our cohort, and we
annotated them using both morphological and gene expression data. The
groups were named as: proliferative (P), normal-stroma enriched (NSE),
metabolic (M) and metabolic-immune enriched (MIE). We validated our
findings in an external cohort (METABRIC), and we observed the same
biological differences that we observed in our dataset among the four
groups. Moreover, we observed differences in disease outcome between
groups (with NSE showing better and M and P worse outcome for relapse-
free survival). Of note, two of the three groups associated to worse disease
outcome (M and MIE) were related to metabolism and not to proliferation,
showing an important implication of metabolism in the biology of ILC.

LAY ABSTRACT

MATERIALS AND METHODS

Spatial transcriptomics Data

• Spatial transcriptomics (ST – Fig. 3) was performed on 43 ILC primary frozen tumor samples
(HR+, HER2-) coming from patients with long term follow up (Table 1.)

ST cohort Grade Tumor stage Nodal status Disease relapse
Tot G1 G2 G3 T1 T2-3 N0 N+ No Yes

N. of samples 43 5 34 4 24 19 30 13 34 9

• Public microarray expression lobular datasets (METABRIC, n = 122) as validation set
Figure 2.

Table 1.

Tissue Section Spatial Transcriptomic Spots Visualize gene expression

Computational analysis

Annotation of H&E slides relative 
to ST samples

Co-occurrence analysis (at the 
spot-level) between tumor and 

all the other TME cell types

Clustering of ST spots (based on 
gene expression) of integrated 

samples

Integration of annotation, co-
occurrence and clustering 

analyses to build a ILC 
classification

Validation of our classification in 
external ILC microarray cohort 

(METABRIC)

OBJECTIVES

• To characterize the spatial transcriptome heterogeneity of lobular BC
including its tumor microenvironment

• To interrogate whether spatial transcriptomics may improve the prediction
of the risk of recurrence in lobular breast cancer

Pros:
• Spatial 

information
• Higher resolution 

than bulk RNA-
seq

Cons:
• Lower resolution 

than single cell 
RNA-seq

RESULTS

1) Ciriello G, et al. 2015. Cell. 2) Desmedt C, et al. 2016. J. Clin. Oncol. 3) Desmedt C, et al. 2018. J. Natl Cancer Inst.
4) NIH - National Cancer Institute. 5) Technical Note – 10x Genomics, (2019, April 30). 6) Parker, et al. 2009. JCO

REFERENCES ACKNOWLEDGMENTS AND CONTACTS

Acknowledgments: Fond de la Recherche Scientifique, Télévie, Association Jules
Bordet, Breast Cancer Research Foundation. Contact: matteo.serra@hubruxelles.be

Morphological annotation and co-occurrence analysis

Clustering analysis

• 23 clusters were obtained across all the samples. Some clusters were sample-specific,
other clusters were shared between all the samples (mainly normal structures, Fig. 4a,b)

Figure 4.

𝐶𝑂 =
𝑁.𝑚𝑖𝑥𝑒𝑑 𝑠𝑝𝑜𝑡𝑠
𝑁. 𝑡𝑢𝑚𝑜𝑟 𝑠𝑝𝑜𝑡𝑠

• Level of co-occurrence (CO) between tumor spots and each cell
type in the TME was computed (for each cell type) as in Formula
1, where “N. mixed spots” is the number of ST spots containing
both tumor and the class of interest and “N. tumor spots” is the
total number of spots containing tumor Formula 1.

Figure 3.
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• Information coming from morphological
annotation, co-occurrence analysis and
spot-level clustering (summarizing RNA-
seq information) was merged and used
to feed a clustering algorithm based on
NMF (intNMF) to obtain a patient-level
classification

• Four classes of patients were identified
and annotated using both morphology
and gene set enrichment analysis (GSEA,
Fig. 5)

• Differences in terms of enriched
pathways (Hallmarks and Reactome)
between groups are shown in Fig. 6

• To validate our findings, we derived four
gene signatures (from differential
expression analysis between samples
pseudo-bulks) related to the four groups
of patients. These signatures allowed us to
retrieve the same groups in external
microarray cohort (METABRIC)

• In the METABRIC, the four groups showed
the same biological differences observed
in our cohort (Fig. 7a)

• No concordance was found between our
classification, PAM50 and previous ILC
classification – proliferative (P), immune-
related (IR), reactive-like (RL) subtypes -
(Ciriello et al. 2015. Cell, Fig. 7b).

• Survival analysis performed in METABRIC
showed that NSE was associated to
longer relapse-free survival (Fig. 7c)
compared to the other subtypes


