Spatially resolved analysis of tumor microenvironment revealed biologically driven subgroups with distinct clinical outcome in invasive lobular carcinoma
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LAY ABSTRACT BACKGROUND CONCLUSION

In this work, we aimed to study tumor microenvironment heterogeneity in * Invasive lobular breast carcinoma (ILC) represents 15% of all invasive breast cancers (BC) :'ff":’;'~.;j;".'»¢  Morphological annotation and cIusTQring analysis revealed a high level of inter-
ILC. We performed spatial franscriptomics (ST) on 43 frozen tumor samples . Understudied subtype =N ’;‘\:‘:;,f;% ) and intra-patient heterogeneity, both in tferms of morphology and gene expression
obtained from patients with estrogen receptor-positive, HER2-negative ILC. . Characterized by late relapse e e * This heterogeneity allowed us fo identify four groups of patients (classes)

ST is a fechnique that allows us to sequence the RNA of a slice of fissue by . Loss of cell adhesion and typical “single file” pattern of the cells (Fig. 1) .,,Qh::'”‘: ~ « These four groups showed different biological features and different disease

keeping the spatial informatfion of the RNA expression, thanks to special outcome in our dataset

. . . - o :
« The fumor microenvironment (TME) is the set of normal cells, molecules and blood vessels ‘& ™% O«

igg’:iso:\ksm:e%rﬁvgb’:i nggﬁplgﬁglge vseerg (r):wc;rrhpehcillzsgtgji?:.q:ﬁye”c;(r]mloc;%?e/gogg that surround and feed a fumor cell (Fig 2.} 4 ‘\*"f_- ’ ‘?_;, . IT\;wE)TsAeBcéllféerences (both biological and in terms of survival) were observed also in
assigning a cell type (label) to each cell and structure present in the slide. » A tumor can change its TME, and the TME can affect how a tumor growths and spreads 1l %e 04 . f . . :
We performed clustering analysis in each sample (at the spot level), « Interaction between cancer cells and TME plays a role in defining prognosis in BC Figure 1. * since 2 of fhese 4 group§ were.relo’red fo increased metapolism, metabolism
identifying groups of spots (across all our patients) sharing common seems fo be a key feature in ILC biology

characteristics from fheir gene expression point of view. The information MATERIALS AND METHODS

coming from the spot level clustering analysis and the morphological
annotation was merged and used as input for a clustering analysis at the

. ; . ; T Spatial tfranscriptomics Data
patient level. We identified four groups of patients inside our cohort, and we P p q
annotated them using both morphological and gene expression data. The Pros: Soatial | Stom ST — Fig. 3 f J 43 ILC ori f ¢ |
groups were named as: proliferative (P), normal-siroma enriched (NSE), : « Spatial ) IS§+|OHErR02nscrlp Qmm}gs (ST - ’r'lg.’r ) vfrﬂsl Pet ;)rmef ”on - glnrr;qry rozen fumor Sampies
metabolic (M) and metabolic-immune enriched (MIE). We validated our 2 information (HR+, -) coming from patients with long term follow up (Table 1.)
indi i « Higher resolution
findings in on extermal conorl (METABRIC), and we observed the same ST conor Nodal st
biological differences that we observed in our dataset among the four seq 9.3 NO
groups. Moreover, we observed differences Iin disease outcome between N o I 43 34 . > = 0 E 34 5
groups (with NSE showing better and M and P worse outcome for relapse- Cons: - OF SaMpPIes 2
free survival). Of note, two of the three groups associated to worse disease . Lower resolution Table 1.
outcome (M and MIE) were related to metabolism and not to proliferation, o W , . = | JIrQhNO: single cell | | | -
. . . . . . . . - N | | | . . : -S€ ° -
showing an important implication of metabolism in the biology of ILC. Figure 2. ' Tissue Section Spo’rlol Transcriptomic SpoTs Visualize gene expression g Public microarray expression lobular datasets (METABRIC, n = 122) as validation set
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